

MERI College of Engineering & Technology (MERI-CET)

Session: 2019-2020

Course: CSE

Lesson plan

Name of the faculty	:	Er. Gaurav Kumar
Discipline	:	CSE/ECE
Semester	:	6 th Semester
Subject	:	Digital System Design
Lesson Plan Duration	:	15 weeks (From 4 th Jan, 2020 to 20 th April 2020)

Work Load (Lecture/ Practical) per week (in hours): Lecture-02, Practical-01

Week		Theory	Practical		
	Lecture day	Topic(Including assignment/test)	Practic al Day	Торіс	
1 st	1 st	Introduction to Computer aided design tools for digital systems	1 st	Design all gates using VHDL	
	2	digital systems			
2 nd	1 st 2 nd	Hardware description languages Introduction to VHDL	2 nd	Design all gates using VHDL	
3 rd	1 st	Data objects, classes and data types	3rd	WAP in VHDL of Half Adder	
	2 nd	Operators.	C		
4 th	1 st	Types of delays Entity and Architecture declaration.	4 th	WAP in VHDL of Full Adder	
	2 nd	Introduction to behavioral, dataflow and structural models.			
5 th	1 st	Vhdl Statements: Assignment statements, sequential statements	5 th	WAP in VHDL of Full Adder	
	2 nd	Process, conditional statements,			
6 th	1 st	Case statement Array and loops, resolution functions	6 th	WAP in VHDL of Multiplexer.	
	2 nd	Packages and Libraries, concurrent statements.			
7 th	1 st	Subprograms: Application of Functions and Procedures, Structural Modeling	7 th	WAP in VHDL of DE Multiplexer	
	2 nd	Component declaration, structural layout and generics			
8 th	1 st	Combinational Circuit Design	8 th		
	2 nd	VHDL Models and Simulation of Multiplexers.		WAP in VHDL of Encoder.	
9 th	1 st	VHDL Models and Simulation of DE multiplexers	9 th	WAP in VHDL of Decoder.	

Digital System Design

MERI College of Engineering & Technology (MERI-CET)

Session: 2019-2020

Course: CSE

	2 nd	VHDL Models and Simulation of encoders		
10 th	1 st	VHDL Models and Simulation of decoders.	10 th	
	2 nd	Code converters		WAP in VHDL of
				Comparator.
11 th	1 st	Implementation of Boolean functions etc.	11 th	WAP in VHDL of
	2 nd	Comparators, Sequential Circuits Design		Comparator.
12 th	1 st	VHDL Models and Simulation of Sequential	12 th	
		Circuits.		
	2 nd	VHDL Models and Simulation of Shift Registers,		WAP in VHDL of Code
		Counters		converter.
13 th	1 st	Design Of Microcomputer: Basic components of	13 th	
		a computer, ,		
	2 nd	specifications architecture of a simple		
		microcomputer system		Internal Practical
14 th	1^{st}	Implementation of a simple microcomputer	14 th	
		system using VHDL.		
	2 nd	Programmable logic devices: ROM, PLAs, PALs		Internal Practical
15 th	1 st	GAL, PEEL, CPLDs and FPGA.	15 th	External Practical.
	2 nd	Design implementation using CPLDs and FPGAs		

REFERENCE BOOKS:

1. IEEE Standard VHDL Language Reference Manual (1993).

2. Digital Design and Modelling with VHDL and Synthesis : KC Chang; IEEE Computer Society Press.

- 3. "A VHDL Primmer" : Bhasker; Prentice Hall 1995.
- 4. "Digital System Design using VHDL" : Charles. H.Roth ; PWS (1998).
- 5. "VHDL-Analysis & Modelling of Digital Systems" : Navabi Z; McGraw Hill.
- 6. VHDL-IV Edition :Perry; TMH (2002)
- 7. "Introduction to Digital Systems" : Ercegovac. Lang & Moreno; John Wiley (1999).
- 8. Fundamentals of Digital Logic with VHDL Design : Brown and Vranesic; TMH (2000)
- 9. Modern Digital Electronics- III Edition: R.P Jain; TMH (2003).